Part Number Hot Search : 
EC110 74LVC57 IRF540 SK70WT 74VHC27 SKB5207 Z600LA20 A8140130
Product Description
Full Text Search
 

To Download APT5014LVFR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 APT5014B2VFR APT5014LVFR
500V
37A 0.140
POWER MOS V(R) FREDFET
Power MOS V(R) is a new generation of high voltage N-Channel enhancement mode power MOSFETs. This new technology minimizes the JFET effect, increases packing density and reduces the on-resistance. Power MOS V(R) also achieves faster switching speeds through optimized gate layout.
B2VFR
T-MAXTM
TO-264
LVFR
* T-MAXTM or TO-264 Package * Faster Switching * Lower Leakage
MAXIMUM RATINGS
Symbol VDSS ID IDM VGS VGSM PD TJ,TSTG TL IAR EAR EAS Parameter Drain-Source Voltage
* Avalanche Energy Rated * FAST RECOVERY BODY DIODE
G
D
S
All Ratings: TC = 25C unless otherwise specified.
APT5014B2VFR_LVFR UNIT Volts Amps
500 37 148 30 40 450 3.6 -55 to 150 300 37 35
4 1
Continuous Drain Current @ TC = 25C Pulsed Drain Current Gate-Source Voltage Continuous Gate-Source Voltage Transient Total Power Dissipation @ TC = 25C Linear Derating Factor Operating and Storage Junction Temperature Range Lead Temperature: 0.063" from Case for 10 Sec. Avalanche Current
1
Volts Watts W/C C Amps mJ
(Repetitive and Non-Repetitive)
1
Repetitive Avalanche Energy
Single Pulse Avalanche Energy
1600
STATIC ELECTRICAL CHARACTERISTICS
Symbol BVDSS ID(on) RDS(on) IDSS IGSS VGS(th) Characteristic / Test Conditions Drain-Source Breakdown Voltage (VGS = 0V, ID = 250A) On State Drain Current
2
MIN
TYP
MAX
UNIT Volts Amps
500 37 0.14 250 1000 100 2 4
(VDS > ID(on) x R DS(on) Max, VGS = 10V)
2
Drain-Source On-State Resistance
(VGS = 10V, ID = 18.5A)
Ohms A nA Volts
6-2004 050-5847 Rev A
Zero Gate Voltage Drain Current (VDS = 500V, VGS = 0V) Zero Gate Voltage Drain Current (VDS = 400V, VGS = 0V, TC = 125C) Gate-Source Leakage Current (VGS = 30V, VDS = 0V) Gate Threshold Voltage (VDS = VGS, ID = 2.5mA)
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
DYNAMIC CHARACTERISTICS
Symbol Ciss Coss Crss Qg Qgs Qgd t d(on) tr t d(off) tf Characteristic Input Capacitance Output Capacitance Reverse Transfer Capacitance Total Gate Charge
3
APT5014B2VFR_LVFR
Test Conditions VGS = 0V VDS = 25V f = 1 MHz VGS = 10V VDD = 0.5 VDSS ID = ID [Cont.] @ 25C VGS = 15V VDD = 0.5 VDSS ID = ID [Cont.] @ 25C RG = 1.6 MIN TYP MAX UNIT pF
5600 737 330 234 36 115 12 15 45 7
6720 1030 500 350 54 170 24 30 70 14
ns nC
Gate-Source Charge Gate-Drain ("Miller ") Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS
Symbol IS ISM VSD
dv/ dt
Characteristic / Test Conditions Continuous Source Current (Body Diode) Pulsed Source Current Diode Forward Voltage Peak Diode Recovery
1 2
MIN
TYP
MAX
UNIT Amps Volts V/ns ns C Amps
37 148 1.3 15
Tj = 25C Tj = 125C Tj = 25C Tj = 125C Tj = 25C Tj = 125C
(Body Diode) (VGS = 0V, IS = -ID [Cont.])
dv/ 5 dt
t rr Q rr IRRM
Reverse Recovery Time (IS = -ID [Cont.], di/dt = 100A/s) Reverse Recovery Charge (IS = -ID [Cont.], di/dt = 100A/s) Peak Recovery Current (IS = -ID [Cont.], di/dt = 100A/s)
250 525 1.6 6.0 14 24
THERMAL CHARACTERISTICS
Symbol RJC RJA Characteristic Junction to Case Junction to Ambient MIN TYP MAX UNIT C/W
0.28 40
3 See MIL-STD-750 Method 3471 4 Starting T = +25C, L = 2.34mH, R = 25, Peak I = 37A temperature. j G L 2 Pulse Test: Pulse width < 380 S, Duty Cycle < 2% 5 dv/ numbers reflect the limitations of the test circuit rather than the dt device itself. IS ID-37A di/dt 700A/s VR 500V TJ 150C APT Reserves the right to change, without notice, the specifications and information contained herein.
1 Repetitive Rating: Pulse width limited by maximum junction
0.3
, THERMAL IMPEDANCE (C/W)
D=0.5 0.1 0.05 0.2 0.1 0.05
PDM
6-2004
0.01 0.005
Note: 0.02 0.01 SINGLE PULSE
t1 t2 Duty Factor D = t1/t2 Peak TJ = PDM x ZJC + TC
050-5847 Rev A
Z
JC
0.001 10-5
10-3 10-2 10-1 1.0 10 RECTANGULAR PULSE DURATION (SECONDS) FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION
10-4
APT5014B2VFR_LVFR
100
ID, DRAIN CURRENT (AMPERES)
VGS=7V, 10V & 15V
100
ID, DRAIN CURRENT (AMPERES)
6.5V
7V VGS=10V & 15V 6.5V 6V
80 6V 60 5.5V 40 5V 20 4.5V 0 50 100 150 200 250 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FIGURE 2, TYPICAL OUTPUT CHARACTERISTICS 0
80
60 5.5V 40 5V 20 4.5V 0 2 4 6 8 10 12 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FIGURE 3, TYPICAL OUTPUT CHARACTERISTICS 0
RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE
80
ID, DRAIN CURRENT (AMPERES)
TJ = -55C
VDS> ID (ON) x RDS (ON)MAX. 250SEC. PULSE TEST @ <0.5 % DUTY CYCLE
1.6
V
1.5 1.4 1.3 1.2 1.1 1.0 0.9
GS
NORMALIZED TO = 10V @ 0.5 I [Cont.]
D
60
40
VGS=10V VGS=20V
20
TJ = +125C TJ = +25C TJ = -55C
0 2 4 6 8 VGS, GATE-TO-SOURCE VOLTAGE (VOLTS) FIGURE 4, TYPICAL TRANSFER CHARACTERISTICS 40
ID, DRAIN CURRENT (AMPERES)
0
0
20 40 60 80 100 ID, DRAIN CURRENT (AMPERES) FIGURE 5, RDS(ON) vs DRAIN CURRENT
BVDSS, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED)
1.15 1.10 1.05 1.00 0.95 0.90 0.85
32
24
16
8
50 75 100 125 150 TC, CASE TEMPERATURE (C) FIGURE 6, MAXIMUM DRAIN CURRENT vs CASE TEMPERATURE
RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE (NORMALIZED)
0
25
-25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (C) FIGURE 7, BREAKDOWN VOLTAGE vs TEMPERATURE 1.2
-50
2.5
I = 0.5 I [Cont.]
D D
VGS(TH), THRESHOLD VOLTAGE (NORMALIZED)
V
GS
= 10V
2.0
1.1 1.0 0.9 0.8 0.7 0.6
1.5
1.0
0.5
0.0 -50
-25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (C) FIGURE 8, ON-RESISTANCE vs. TEMPERATURE
-25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (C) FIGURE 9, THRESHOLD VOLTAGE vs TEMPERATURE
-50
050-5847 Rev A
6-2004
APT5014B2VFR_LVFR
200
ID, DRAIN CURRENT (AMPERES)
100 50
10S
OPERATION HERE LIMITED BY RDS (ON)
20,000 10,000 Ciss
C, CAPACITANCE (pF)
100S
5,000
10 5
1mS 10mS 100mS DC
Coss 1,000 500
1 .5
TC =+25C TJ =+150C SINGLE PULSE
Crss
.1
1 5 10 50 100 500 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FIGURE 10, MAXIMUM SAFE OPERATING AREA
I = I [Cont.]
D D
.01 .1 1 10 50 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FIGURE 11, TYPICAL CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE
IDR, REVERSE DRAIN CURRENT (AMPERES)
100
VGS, GATE-TO-SOURCE VOLTAGE (VOLTS)
20
100 50 TJ =+150C TJ =+25C
16
VDS=100V VDS=250V
10 5
12
VDS=400V
8
1 0.5
4
100 200 300 400 500 Qg, TOTAL GATE CHARGE (nC) FIGURE 12, GATE CHARGES vs GATE-TO-SOURCE VOLTAGE
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 VSD, SOURCE-TO-DRAIN VOLTAGE (VOLTS) FIGURE 13, TYPICAL SOURCE-DRAIN DIODE FORWARD VOLTAGE
0.1
T-MAXTM (B2) Package Outline (B2VFR)
4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 5.38 (.212) 6.20 (.244)
TO-264 (L) Package Outline (LVFR)
4.60 (.181) 5.21 (.205) 1.80 (.071) 2.01 (.079) 19.51 (.768) 20.50 (.807) 3.10 (.122) 3.48 (.137) 5.79 (.228) 6.20 (.244)
Drain
20.80 (.819) 21.46 (.845)
Drain
25.48 (1.003) 26.49 (1.043)
4.50 (.177) Max. 0.40 (.016) 0.79 (.031)
2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 2.29 (.090) 2.69 (.106) 19.81 (.780) 21.39 (.842)
2.29 (.090) 2.69 (.106)
6-2004
19.81 (.780) 20.32 (.800)
1.01 (.040) 1.40 (.055)
Gate Drain Source
0.48 (.019) 0.84 (.033) 2.59 (.102) 3.00 (.118)
Gate Drain Source
050-5847 Rev A
2.21 (.087) 2.59 (.102)
5.45 (.215) BSC 2-Plcs.
0.76 (.030) 1.30 (.051) 2.79 (.110) 3.18 (.125) 5.45 (.215) BSC 2-Plcs.
These dimensions are equal to the TO-247 without the mounting hole. Dimensions in Millimeters and (Inches)
Dimensions in Millimeters and (Inches)
APT's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.


▲Up To Search▲   

 
Price & Availability of APT5014LVFR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X